Displaying 141 – 160 of 1163

Showing per page

Characterizations of incidence modules

Naseer Ullah, Hailou Yao, Qianqian Yuan, Muhammad Azam (2024)

Czechoslovak Mathematical Journal

Let R be an associative ring and M be a left R -module. We introduce the concept of the incidence module I ( X , M ) of a locally finite partially ordered set X over M . We study the properties of I ( X , M ) and give the necessary and sufficient conditions for the incidence module to be an IN-module, -module, nil injective module and nonsingular module, respectively. Furthermore, we show that the class of -modules is closed under direct product and upper triangular matrix modules.

Characterizations of semiperfect and perfect rings.

Weimin Xue (1996)

Publicacions Matemàtiques

We characterize semiperfect modules, semiperfect rings, and perfect rings using locally projective covers and generalized locally projective covers, where locally projective modules were introduced by Zimmermann-Huisgen and generalized locally projective covers are adapted from Azumaya’s generalized projective covers.

Classification of ideals of 8 -dimensional Radford Hopf algebra

Yu Wang (2022)

Czechoslovak Mathematical Journal

Let H m , n be the m n 2 -dimensional Radford Hopf algebra over an algebraically closed field of characteristic zero. We give the classification of all ideals of 8 -dimensional Radford Hopf algebra H 2 , 2 by generators.

Closed extensions of R-modules in the case of a semi-artinian ring R

Frans Loonstra (1985)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si considerano le estensioni chiuse B di un R -modulo A mediante un R -modulo C nel caso in cui R sia un anello semi-artiniano, cioè un anello R con la proprietà che per ogni quoziente ( R / I ) 0 sia soc ( R / I ) 0 . Tali estensioni sono caratterizzate dal fatto che A deve essere un sottomodulo semi-puro di B .

Codimension B-W d’un idéal à droite non nul de A 1 ( )

Mathias Konan Kouakou (2005)

Bulletin de la Société Mathématique de France

Soit A 1 ( ) la première algèbre de Weyl sur . La codimension B-W d’un idéal à droite non nul I de A 1 ( ) a été introduite par Yuri Berest et George Wilson. Nous montrons d’une part que cette codimension est invariante par la relation de Stafford : si x Q 1 = Frac ( A 1 ( ) ) , le corps de fractions de A 1 ( ) , et si σ Aut ( A 1 ( ) ) , le groupe des -automorphismes de A 1 ( ) , sont tels que J = x σ ( I ) soit un idéal à droite de A 1 ( ) , alors codim I = codim x σ ( I ) . Nous relions d’autre part la codimension d’un idéal I à la codimension de Gail Letzter-Makar Limanov, de End ( I ) , l’anneau des endomorphismes...

Currently displaying 141 – 160 of 1163