Displaying 161 – 180 of 1161

Showing per page

Cohomologie locale de certains anneaux Auslander-Gorenstein.

Marie-Paule Malliavin (1992)

Publicacions Matemàtiques

We give axiomatic conditions in order to calculate the local cohomology of some idempotent kernel functors. These results lie in some new dimension introduced by T. Levasseur for Auslander-Gorenstein rings. Under some hypothesis, we generalize previous results.

Commutative rings whose certain modules decompose into direct sums of cyclic submodules

Farid Kourki, Rachid Tribak (2023)

Czechoslovak Mathematical Journal

We provide some characterizations of rings R for which every (finitely generated) module belonging to a class 𝒞 of R -modules is a direct sum of cyclic submodules. We focus on the cases, where the class 𝒞 is one of the following classes of modules: semiartinian modules, semi-V-modules, V-modules, coperfect modules and locally supplemented modules.

Composition-diamond lemma for modules

Yuqun Chen, Yongshan Chen, Chanyan Zhong (2010)

Czechoslovak Mathematical Journal

We investigate the relationship between the Gröbner-Shirshov bases in free associative algebras, free left modules and “double-free” left modules (that is, free modules over a free algebra). We first give Chibrikov’s Composition-Diamond lemma for modules and then we show that Kang-Lee’s Composition-Diamond lemma follows from it. We give the Gröbner-Shirshov bases for the following modules: the highest weight module over a Lie algebra s l 2 , the Verma module over a Kac-Moody algebra, the Verma module...

Comultiplication modules over a pullback of Dedekind domains

Reza Ebrahimi Atani, Shahabaddin Ebrahimi Atani (2009)

Czechoslovak Mathematical Journal

First, we give complete description of the comultiplication modules over a Dedekind domain. Second, if R is the pullback of two local Dedekind domains, then we classify all indecomposable comultiplication R -modules and establish a connection between the comultiplication modules and the pure-injective modules over such domains.

Copure injective resolutions, flat resolvents and dimensions

Edgar E. Enochs, Jenda M. G. Overtoun (1993)

Commentationes Mathematicae Universitatis Carolinae

In this paper, we show the existence of copure injective preenvelopes over noetherian rings and copure flat preenvelopes over commutative artinian rings. We use this to characterize n -Gorenstein rings. As a consequence, if the full subcategory of strongly copure injective (respectively flat) modules over a left and right noetherian ring R has cokernels (respectively kernels), then R is 2 -Gorenstein.

Costable rings

Tomáš Kepka (1974)

Commentationes Mathematicae Universitatis Carolinae

Countably thick modules

Ali Abdel-Mohsen, Mohammad Saleh (2005)

Archivum Mathematicum

The purpose of this paper is to further the study of countably thick modules via weak injectivity. Among others, for some classes of modules in σ [ M ] we study when direct sums of modules from satisfies a property in σ [ M ] . In particular, we get characterization of locally countably thick modules, a generalization of locally q.f.d. modules.

Currently displaying 161 – 180 of 1161