Previous Page 6

Displaying 101 – 105 of 105

Showing per page

Orbit algebras and periodicity

Petter Andreas Bergh (2009)

Colloquium Mathematicae

Given an object in a category, we study its orbit algebra with respect to an endofunctor. We show that if the object is periodic, then its orbit algebra modulo nilpotence is a polynomial ring in one variable. This specializes to a result on Ext-algebras of periodic modules over Gorenstein algebras. We also obtain a criterion for an algebra to be of wild representation type.

Orbit algebras that are invariant under stable equivalences of Morita type

Zygmunt Pogorzały (2014)

Open Mathematics

In this note we show that there are a lot of orbit algebras that are invariant under stable equivalences of Morita type between self-injective algebras. There are also indicated some links between Auslander-Reiten periodicity of bimodules and noetherianity of their orbit algebras.

Currently displaying 101 – 105 of 105

Previous Page 6