Displaying 121 – 140 of 152

Showing per page

Selfinjective algebras of wild canonical type

Helmut Lenzing, Andrzej Skowroński (2003)

Colloquium Mathematicae

We develop the representation theory of selfinjective algebras which admit Galois coverings by the repetitive algebras of algebras whose derived category of bounded complexes of finite-dimensional modules is equivalent to the derived category of coherent sheaves on a weighted projective line with virtual genus greater than one.

Simply connected right multipeak algebras and the separation property

Stanisław Kasjan (1999)

Colloquium Mathematicae

Let R=k(Q,I) be a finite-dimensional algebra over a field k determined by a bound quiver (Q,I). We show that if R is a simply connected right multipeak algebra which is chord-free and ˜ -free in the sense defined below then R has the separation property and there exists a preprojective component of the Auslander-Reiten quiver of the category prin(R) of prinjective R-modules. As a consequence we get in 4.6 a criterion for finite representation type of prin(R) in terms of the prinjective Tits quadratic...

Slice modules over minimal 2-fundamental algebras

Zygmunt Pogorzały, Karolina Szmyt (2007)

Open Mathematics

We consider a class of algebras whose Auslander-Reiten quivers have starting components that are not generalized standard. For these components we introduce a generalization of a slice and show that only in finitely many cases (up to isomorphism) a slice module is a tilting module.

Strongly simply connected coil algebras

Flávio U. Coelho, Ma. I. R. Martins, Bertha Tomé (2004)

Colloquium Mathematicae

We study the simple connectedness and strong simple connectedness of the following classes of algebras: (tame) coil enlargements of tame concealed algebras and n-iterated coil enlargement algebras.

Substructures of algebras with weakly non-negative Tits form.

José Antonio de la Peña, Andrzej Skowronski (2007)

Extracta Mathematicae

Let A = kQ/I be a finite dimensional basic algebra over an algebraically closed field k presented by its quiver Q with relations I. A fundamental problem in the representation theory of algebras is to decide whether or not A is of tame or wild type. In this paper we consider triangular algebras A whose quiver Q has no oriented paths. We say that A is essentially sincere if there is an indecomposable (finite dimensional) A-module whose support contains all extreme vertices of Q. We prove that if...

Tame triangular matrix algebras

Zbigniew Leszczyński, Andrzej Skowroński (2000)

Colloquium Mathematicae

We describe all finite-dimensional algebras A over an algebraically closed field for which the algebra T 2 ( A ) of 2×2 upper triangular matrices over A is of tame representation type. Moreover, the algebras A for which T 2 ( A ) is of polynomial growth (respectively, domestic, of finite representation type) are also characterized.

Tensor products of higher almost split sequences in subcategories

Xiaojian Lu, Deren Luo (2023)

Czechoslovak Mathematical Journal

We introduce the algebras satisfying the ( , n ) condition. If Λ , Γ are algebras satisfying the ( , n ) , ( , m ) condition, respectively, we give a construction of ( m + n ) -almost split sequences in some subcategories ( ) ( i 0 , j 0 ) of mod ( Λ Γ ) by tensor products and mapping cones. Moreover, we prove that the tensor product algebra Λ Γ satisfies the ( ( ) ( i 0 , j 0 ) , n + m ) condition for some integers i 0 , j 0 ; this construction unifies and extends the work of A. Pasquali (2017), (2019).

The component quiver of a self-injective artin algebra

Alicja Jaworska, Andrzej Skowroński (2011)

Colloquium Mathematicae

We prove that the component quiver Σ A of a connected self-injective artin algebra A of infinite representation type is fully cyclic, that is, every finite set of components of the Auslander-Reiten quiver Γ A of A lies on a common oriented cycle in Σ A .

The composite of irreducible morphisms in regular components

Claudia Chaio, María Inés Platzeck, Sonia Trepode (2011)

Colloquium Mathematicae

We study when the composite of n irreducible morphisms between modules in a regular component of the Auslander-Reiten quiver is non-zero and lies in the n+1-th power of the radical ℜ of the module category. We prove that in this case such a composite belongs to . We apply these results to characterize those string algebras having n irreducible morphisms between band modules such that their composite is a non-zero morphism in n + 1 .

Currently displaying 121 – 140 of 152