Displaying 61 – 80 of 110

Showing per page

Odd H-depth and H-separable extensions

Lars Kadison (2012)

Open Mathematics

Let C n(A,B) be the relative Hochschild bar resolution groups of a subring B ⊆ A. The subring pair has right depth 2n if C n+1(A,B) is isomorphic to a direct summand of a multiple of C n(A,B) as A-B-bimodules; depth 2n + 1 if the same condition holds only as B-B-bimodules. It is then natural to ask what is defined if this same condition should hold as A-A-bimodules, the so-called H-depth 2n − 1 condition. In particular, the H-depth 1 condition coincides with A being an H-separable extension of B....

On a cubic Hecke algebra associated with the quantum group U q ( 2 )

Janusz Wysoczański (2010)

Banach Center Publications

We define an operator α on ℂ³ ⊗ ℂ³ associated with the quantum group U q ( 2 ) , which satisfies the Yang-Baxter equation and a cubic equation (α² - 1)(α + q²) = 0. This operator can be extended to a family of operators h j : = I j α I n - 2 - j on ( ³ ) n with 0 ≤ j ≤ n - 2. These operators generate the cubic Hecke algebra q , n ( 2 ) associated with the quantum group U q ( 2 ) . The purpose of this note is to present the construction.

On complements and the factorization problem of Hopf algebras

Sebastian Burciu (2011)

Open Mathematics

Two new results concerning complements in a semisimple Hopf algebra are proved. They extend some well-known results from group theory. The uniqueness of a Krull-Schmidt-Remak type decomposition is proved for semisimple completely reducible Hopf algebras.

On generalized partial twisted smash products

Shuangjian Guo (2014)

Czechoslovak Mathematical Journal

We first introduce the notion of a right generalized partial smash product and explore some properties of such partial smash product, and consider some examples. Furthermore, we introduce the notion of a generalized partial twisted smash product and discuss a necessary condition under which such partial smash product forms a Hopf algebra. Based on these notions and properties, we construct a Morita context for partial coactions of a co-Frobenius Hopf algebra.

On the quantum groups and semigroups of maps between noncommutative spaces

Maysam Maysami Sadr (2017)

Czechoslovak Mathematical Journal

We define algebraic families of (all) morphisms which are purely algebraic analogs of quantum families of (all) maps introduced by P. M. Sołtan. Also, algebraic families of (all) isomorphisms are introduced. By using these notions we construct two classes of Hopf-algebras which may be interpreted as the quantum group of all maps from a finite space to a quantum group, and the quantum group of all automorphisms of a finite noncommutative (NC) space. As special cases three classes of NC objects are...

Parametric representations of BiHom-Hopf algebras

Xiaohui Zhang, Wei Wang, Juzhen Chen (2024)

Czechoslovak Mathematical Journal

The main purpose of the present paper is to study representations of BiHom-Hopf algebras. We first introduce the notion of BiHom-Hopf algebras, and then discuss BiHom-type modules, Yetter-Dinfeld modules and Drinfeld doubles with parameters. We get some new n -monoidal categories via the category of BiHom-(co)modules and the category of BiHom-Yetter-Drinfeld modules. Finally, we obtain a center construction type theorem on BiHom-Hopf algebras.

Quantum idempotence, distributivity, and the Yang-Baxter equation

J. D. H. Smith (2016)

Commentationes Mathematicae Universitatis Carolinae

Quantum quasigroups and loops are self-dual objects that provide a general framework for the nonassociative extension of quantum group techniques. They also have one-sided analogues, which are not self-dual. In this paper, natural quantum versions of idempotence and distributivity are specified for these and related structures. Quantum distributive structures furnish solutions to the quantum Yang-Baxter equation.

Quasitriangular Hom-Hopf algebras

Yuanyuan Chen, Zhongwei Wang, Liangyun Zhang (2014)

Colloquium Mathematicae

A twisted generalization of quasitriangular Hopf algebras called quasitriangular Hom-Hopf algebras is introduced. We characterize these algebras in terms of certain morphisms. We also give their equivalent description via a braided monoidal category ̃ ( H ) . Finally, we study the twisting structure of quasitriangular Hom-Hopf algebras by conjugation with Hom-2-cocycles.

Quasitriangular Hopf group algebras and braided monoidal categories

Shiyin Zhao, Jing Wang, Hui-Xiang Chen (2014)

Czechoslovak Mathematical Journal

Let π be a group, and H be a semi-Hopf π -algebra. We first show that the category H of left π -modules over H is a monoidal category with a suitably defined tensor product and each element α in π induces a strict monoidal functor F α from H to itself. Then we introduce the concept of quasitriangular semi-Hopf π -algebra, and show that a semi-Hopf π -algebra H is quasitriangular if and only if the category H is a braided monoidal category and F α is a strict braided monoidal functor for any α π . Finally,...

Quiver bialgebras and monoidal categories

Hua-Lin Huang, Blas Torrecillas (2013)

Colloquium Mathematicae

We study bialgebra structures on quiver coalgebras and monoidal structures on the categories of locally nilpotent and locally finite quiver representations. It is shown that the path coalgebra of an arbitrary quiver admits natural bialgebra structures. This endows the category of locally nilpotent and locally finite representations of an arbitrary quiver with natural monoidal structures from bialgebras. We also obtain theorems of Gabriel type for pointed bialgebras and hereditary finite pointed...

Remarks on Sekine quantum groups

Jialei Chen, Shilin Yang (2022)

Czechoslovak Mathematical Journal

We first describe the Sekine quantum groups 𝒜 k (the finite-dimensional Kac algebra of Kac-Paljutkin type) by generators and relations explicitly, which maybe convenient for further study. Then we classify all irreducible representations of 𝒜 k and describe their representation rings r ( 𝒜 k ) . Finally, we compute the the Frobenius-Perron dimension of the Casimir element and the Casimir number of r ( 𝒜 k ) .

Representations of étale Lie groupoids and modules over Hopf algebroids

Jure Kališnik (2011)

Czechoslovak Mathematical Journal

The classical Serre-Swan's theorem defines an equivalence between the category of vector bundles and the category of finitely generated projective modules over the algebra of continuous functions on some compact Hausdorff topological space. We extend these results to obtain a correspondence between the category of representations of an étale Lie groupoid and the category of modules over its Hopf algebroid that are of finite type and of constant rank. Both of these constructions are functorially...

Currently displaying 61 – 80 of 110