Generalized Verma modules, loop space cohomology and MacDonald-type identities
We prove that the monoid of generic extensions of finite-dimensional nilpotent k[T]-modules is isomorphic to the monoid of partitions (with addition of partitions). This gives us a simple method for computing generic extensions, by addition of partitions. Moreover we give a combinatorial algorithm that calculates the constant terms of classical Hall polynomials.
[For the entire collection see Zbl 0742.00067.]Let be a connected semisimple Lie group with finite center. In this review article the author describes first the geometric realization of the discrete series representations of on Dolbeault cohomology spaces and the tempered series of representations of on partial Dolbeault cohomology spaces. Then he discusses his joint work with Wilfried Schmid on the construction of maximal globalizations of standard Zuckerman modules via geometric quantization....
À partir de l’étude de l’intégrabilité de la structure adjointe sur un groupe de Lie , on est amené à introduire l’algèbre de Lie des opérateurs symétriques du crochet de l’algèbre de Lie de . On fait apparaître une décomposition canonique de toute algèbre de Lie de centre nul en somme directe d’idéaux caractéristiques, où est somme de deux sous-algèbres abéliennes et où est formée d’opérateurs nilpotents.Nous montrons que l’étude de la platitude à l’ordre 2 de la structure adjointe...