A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras.
The main purpose of this paper is to consider a new definition of Hom-left-symmetric bialgebra. The coboundary Hom-left-symmetric bialgebra is also studied. In particular, we give a necessary and sufficient condition that -matrix is a solution of the Hom--equation by a cocycle condition.
Leibniz algebras are a non-commutative version of usual Lie algebras. We introduce a notion of (pre)crossed Leibniz algebra which is a simultaneous generalization of notions of representation and two-sided ideal of a Leibniz algebra. We construct the Leibniz algebra of biderivations on crossed Leibniz algebras and we define a non-abelian tensor product of Leibniz algebras. These two notions are adjoint to each other. A (co)homological characterization of these new algebraic objects enables us to...
The weak radical, W-Rad(A) of a non-associative algebra A, has been introduced by A. Rodríguez Palacios in [3] in order to generalize the Johnson's uniqueness of norm theorem to general complete normed non-associative algebras (see also [2] for another application of this notion). In [4], he showed that if A is a semiprime non-associative algebra with DCC on ideals, then W-Rad(A) = 0. In the first part of this paper we give an example of a non-semiprime associative algebra A with DCC on ideals and...
A generalisation of quantum principal bundles in which a quantum structure group is replaced by a coalgebra is proposed.
Free Poisson algebras are very closely connected with polynomial algebras, and the Poisson brackets are used to solve many problems in affine algebraic geometry. In this note, we study Poisson derivations on the symplectic Poisson algebra, and give a connection between the Jacobian conjecture with derivations on the symplectic Poisson algebra.
In the paper there are investigated some properties of Lie algebras, the construction which has a wide range of applications like computer sciences (especially to computer visions), geometry or physics, for example. We concentrate on the semidirect sum of algebras and there are extended some theoretic designs as conditions to be a center, a homomorphism or a derivative. The Killing form of the semidirect sum where the second component is an ideal of the first one is considered as well.