Displaying 961 – 980 of 2671

Showing per page

Lie solvable groups algebras of derived length three.

Meena Sahai (1995)

Publicacions Matemàtiques

Let K be a field of characteristic p > 2 and let G be a group. Necessary and sufficient conditions are obtained so that the group algebra KG is strongly Lie solvable of derived length at most 3. It is also shown that these conditions are equivalent to KG Lie solvable of derived length 3 in characteristic p ≥ 7.

Lie triple ideals and Lie triple epimorphisms on Jordan and Jordan-Banach algebras

M. Brešar, M. Cabrera, M. Fošner, A. R. Villena (2005)

Studia Mathematica

A linear subspace M of a Jordan algebra J is said to be a Lie triple ideal of J if [M,J,J] ⊆ M, where [·,·,·] denotes the associator. We show that every Lie triple ideal M of a nondegenerate Jordan algebra J is either contained in the center of J or contains the nonzero Lie triple ideal [U,J,J], where U is the ideal of J generated by [M,M,M]. Let H be a Jordan algebra, let J be a prime nondegenerate Jordan algebra with extended centroid C and unital central closure Ĵ, and let...

Lie-Rinehart algebras, Gerstenhaber algebras and Batalin-Vilkovisky algebras

Johannes Huebschmann (1998)

Annales de l'institut Fourier

For any Lie-Rinehart algebra ( A , L ) , B(atalin)-V(ilkovisky) algebra structures on the exterior A -algebra Λ A L correspond bijectively to right ( A , L ) -module structures on A ; likewise, generators for the Gerstenhaber algebra Λ A L correspond bijectively to right ( A , L ) -connections on A . When L is projective as an A -module, given a B-V algebra structure on Λ A L , the homology of the B-V algebra ( Λ A L , ) coincides with the homology of L with coefficients in A with reference to the right ( A , L ) -module structure determined by . When...

Linear free divisors and the global logarithmic comparison theorem

Michel Granger, David Mond, Alicia Nieto-Reyes, Mathias Schulze (2009)

Annales de l’institut Fourier

A complex hypersurface D in n is a linear free divisor (LFD) if its module of logarithmic vector fields has a global basis of linear vector fields. We classify all LFDs for n at most 4 .By analogy with Grothendieck’s comparison theorem, we say that the global logarithmic comparison theorem (GLCT) holds for D if the complex of global logarithmic differential forms computes the complex cohomology of n D . We develop a general criterion for the GLCT for LFDs and prove that it is fulfilled whenever the...

Linear identities in graph algebras

Agata Pilitowska (2009)

Commentationes Mathematicae Universitatis Carolinae

We find the basis of all linear identities which are true in the variety of entropic graph algebras. We apply it to describe the lattice of all subvarieties of power entropic graph algebras.

Linear maps Lie derivable at zero on 𝒥-subspace lattice algebras

Xiaofei Qi, Jinchuan Hou (2010)

Studia Mathematica

A linear map L on an algebra is said to be Lie derivable at zero if L([A,B]) = [L(A),B] + [A,L(B)] whenever [A,B] = 0. It is shown that, for a 𝒥-subspace lattice ℒ on a Banach space X satisfying dim K ≠ 2 whenever K ∈ 𝒥(ℒ), every linear map on ℱ(ℒ) (the subalgebra of all finite rank operators in the JSL algebra Alg ℒ) Lie derivable at zero is of the standard form A ↦ δ (A) + ϕ(A), where δ is a generalized derivation and ϕ is a center-valued linear map. A characterization of linear maps Lie derivable...

Local geometry of orbits for an ordinary classical lie supergroup

Tomasz Przebinda (2006)

Open Mathematics

In this paper we identify a real reductive dual pair of Roger Howe with an Ordinary Classical Lie supergroup. In these terms we describe the semisimple orbits of the dual pair in the symplectic space, a slice through a semisimple element of the symplectic space, an analog of a Cartan subalgebra, the corresponding Weyl group and the corresponding Weyl integration formula.

Currently displaying 961 – 980 of 2671