On regular and extremely regular algebras
Irreducible representations of quantum groups (in Woronowicz’ approach) were classified in J.Wang, B.Parshall, Memoirs AMS 439 in the case of q being an odd root of unity. Here we find the irreducible representations for all roots of unity (also of an even degree), as well as describe “the diagonal part” of the tensor product of any two irreducible representations. An example of a not completely reducible representation is given. Non-existence of Haar functional is proved. The corresponding representations...
Simple modules for restricted Lie superalgebras are studied. The indecomposability of baby Kac modules and baby Verma modules is proved in some situation. In particular, for the classical Lie superalgebra of type , the baby Verma modules are proved to be simple for any regular nilpotent -character and typical weight . Moreover, we obtain the dimension formulas for projective covers of simple modules with -characters of standard Levi form.
The main goal of this paper is to do the representation-theoretic groundwork for two new candidates for locally compact (nondiscrete) quantum groups. These objects are real forms of the quantized universal enveloping algebra and do not have real Lie algebras as classical limits. Surprisingly, their representations are naturally described using only bounded (in one case only two-dimensional) operators. That removes the problem of describing their Hopf structure ’on the Hilbert space level’([W])....
We study the properties of the group Aut(D) of all biholomorphic transformations of a bounded circular domain D in containing the origin. We characterize the set of all possible roots for the Lie algebra of Aut(D). There exists an n-element set P such that any root is of the form α or -α or α-β for suitable α,β ∈ P.
We give an example of a compact 6-dimensional non-Kähler symplectic manifold that satisfies the Hard Lefschetz Condition. Moreover, it is showed that is a special generalized Calabi-Yau manifold.
This article discusses the Leibniz algebras whose upper hypercenter has finite codimension. It is proved that such an algebra includes a finite dimensional ideal such that the factor-algebra is hypercentral. This result is an extension to the Leibniz algebra of the corresponding result obtained earlier for Lie algebras. It is also analogous to the corresponding results obtained for groups and modules.