Displaying 1681 – 1700 of 2676

Showing per page

Spectral sequences for commutative Lie algebras

Friedrich Wagemann (2020)

Communications in Mathematics

We construct some spectral sequences as tools for computing commutative cohomology of commutative Lie algebras in characteristic 2 . In a first part, we focus on a Hochschild-Serre-type spectral sequence, while in a second part we obtain spectral sequences which compare Chevalley-Eilenberg-, commutative- and Leibniz cohomology. These methods are illustrated by a few computations.

Spectrum for a solvable Lie algebra of operators

Daniel Beltiţă (1999)

Studia Mathematica

A new concept of spectrum for a solvable Lie algebra of operators is introduced, extending the Taylor spectrum for commuting tuples. This spectrum has the projection property on any Lie subalgebra and, for algebras of compact operators, it may be computed by means of a variant of the classical Ringrose theorem.

Spectrum preserving linear mappings in Banach algebras

B. Aupetit, H. du T. Mouton (1994)

Studia Mathematica

Let A and B be two unitary Banach algebras. We study linear mappings from A into B which preserve the polynomially convex hull of the spectrum. In particular, we give conditions under which such surjective linear mappings are Jordan morphisms.

Square subgroups of rank two abelian groups

A. M. Aghdam, A. Najafizadeh (2009)

Colloquium Mathematicae

Let G be an abelian group and ◻ G its square subgroup as defined in the introduction. We show that the square subgroup of a non-homogeneous and indecomposable torsion-free group G of rank two is a pure subgroup of G and that G/◻ G is a nil group.

Squared Hopf algebras and reconstruction theorems

Volodymyr Lyubashenko (1997)

Banach Center Publications

Given an abelian 𝑉-linear rigid monoidal category 𝑉, where 𝑉 is a perfect field, we define squared coalgebras as objects of cocompleted 𝑉 ⨂ 𝑉 (Deligne's tensor product of categories) equipped with the appropriate notion of comultiplication. Based on this, (squared) bialgebras and Hopf algebras are defined without use of braiding. If 𝑉 is the category of 𝑉-vector spaces, squared (co)algebras coincide with conventional ones. If 𝑉 is braided, a braided Hopf algebra can be obtained from a squared...

Stability of commuting maps and Lie maps

J. Alaminos, J. Extremera, Š. Špenko, A. R. Villena (2012)

Studia Mathematica

Let A be an ultraprime Banach algebra. We prove that each approximately commuting continuous linear (or quadratic) map on A is near an actual commuting continuous linear (resp. quadratic) map on A. Furthermore, we use this analysis to study how close are approximate Lie isomorphisms and approximate Lie derivations to actual Lie isomorphisms and Lie derivations, respectively.

Currently displaying 1681 – 1700 of 2676