Displaying 1741 – 1760 of 2676

Showing per page

Sur la méthode des orbites pour une algèbre de Lie résoluble

Jean-Yves Charbonnel (1998)

Annales de l'institut Fourier

Soit 𝔤 une algèbre de Lie complètement résoluble sur un corps de caractéristique zéro. Soit Q un idéal 𝔤 -invariant de l’algèbre symétrique de 𝔤 . L’application de Dixmier pour 𝔤 associe à Q un idéal premier de l’algèbre enveloppante U ( 𝔤 ) de 𝔤 . Soit A ^ ( 𝔤 ) l’algèbre des opérateurs différentiels à coefficients séries formelles. Dans l’algèbre A ( 𝔤 ) des opérateurs différentiels à coefficients polynomiaux, il y a un idéal à gauche Λ 𝔤 ' ( Q ) qui contient Q et les champs de vecteurs adjoints. Il y a un plongement canonique...

Sur la représentation adjointe d'une algèbre de Lie libre. II

Alexandros Patsourakos (1994)

Annales de l'institut Fourier

Soit N le noyau de l’application Γ de l’idéal d’augmentation de l’algèbre enveloppante de L ( X ) sur L ( X ) , l’algèbre de Lie libre sur X , définie par Γ ( x 1 ... x n ) = [ ... [ x n - 1 , x n ] ... ] ] pour x 1 , ... , x n X . Si L ( X ) est munie de la représentation adjointe, alors un ensemble de générateurs de N comme module sur l’algèbre enveloppante est déterminé en termes des ensembles de Hall relatifs à X .

Sur la structure des algèbres de Lie rigides

Roger Carles (1984)

Annales de l'institut Fourier

On étudie la structure des algèbres de Lie rigides sur un corps algébriquement clos de caractéristique 0. Elles sont algébriques. Quand le radical est non nilpotent leur dimension est la même que celle de l’algèbre des dérivations. Quand le radical est nilpotent elle appartient à l’un des cas suivants : parfaite, produit direct d’une algèbre parfaite par le corps de base ou encore toutes les dérivations semi-simples sont intérieures.

Sur l'algèbre de Lie des sections d'un fibré en algèbres de Lie

Pierre Lecomte (1980)

Annales de l'institut Fourier

On étudie la structure naturelle d’algèbre de Lie de l’espace des sections de classe C k d’un fibré localement trivial dont la fibre-type est une algèbre de Lie L ; on décrit, en particulier, ses dérivations et ses automorphismes. On détermine les algèbres de Lie L pour lesquelles cette structure caractérise la structure différentiable de la base du fibré.

Currently displaying 1741 – 1760 of 2676