Displaying 1781 – 1800 of 2676

Showing per page

Symplectic torus actions with coisotropic principal orbits

Johannes Jisse Duistermaat, Alvaro Pelayo (2007)

Annales de l’institut Fourier

In this paper we completely classify symplectic actions of a torus T on a compact connected symplectic manifold ( M , σ ) when some, hence every, principal orbit is a coisotropic submanifold of ( M , σ ) . That is, we construct an explicit model, defined in terms of certain invariants, of the manifold, the torus action and the symplectic form. The invariants are invariants of the topology of the manifold, of the torus action, or of the symplectic form.In order to deal with symplectic actions which are not Hamiltonian,...

Ternary algebras and calculus of cubic matrices

V. Abramov, S. Shitov (2011)

Banach Center Publications

We study associative ternary algebras and describe a general approach which allows us to construct various classes of ternary algebras. Applying this approach to a central bimodule with a covariant derivative we construct a ternary algebra whose ternary multiplication is closely related to the curvature of the covariant derivative. We also apply our approach to a bimodule over two associative (binary) algebras in order to construct a ternary algebra which we use to produce a large class of Lie algebras....

Currently displaying 1781 – 1800 of 2676