Symmetry algebras and normal forms of third order ordinary differential equations.
In this paper we completely classify symplectic actions of a torus on a compact connected symplectic manifold when some, hence every, principal orbit is a coisotropic submanifold of . That is, we construct an explicit model, defined in terms of certain invariants, of the manifold, the torus action and the symplectic form. The invariants are invariants of the topology of the manifold, of the torus action, or of the symplectic form.In order to deal with symplectic actions which are not Hamiltonian,...
Some of the completely integrable Hamiltonian systems obtained through Adler-Kostant-Symes theorem rely on two distinct Lie algebra structures on the same underlying vector space. We study here the cases when two structures are linked together by deformations.
We study associative ternary algebras and describe a general approach which allows us to construct various classes of ternary algebras. Applying this approach to a central bimodule with a covariant derivative we construct a ternary algebra whose ternary multiplication is closely related to the curvature of the covariant derivative. We also apply our approach to a bimodule over two associative (binary) algebras in order to construct a ternary algebra which we use to produce a large class of Lie algebras....