Displaying 1921 – 1940 of 2676

Showing per page

The quantum duality principle

Fabio Gavarini (2002)

Annales de l’institut Fourier

The “quantum duality principle” states that the quantization of a Lie bialgebra – via a quantum universal enveloping algebra (in short, QUEA) – also provides a quantization of the dual Lie bialgebra (through its associated formal Poisson group) – via a quantum formal series Hopf algebra (QFSHA) — and, conversely, a QFSHA associated to a Lie bialgebra (via its associated formal Poisson group) yields a QUEA for the dual Lie bialgebra as well; more in detail, there exist functors 𝒬 𝒰 𝒜 𝒬 𝒮 𝒜 and 𝒬 𝒮 𝒜 𝒬 𝒰 𝒜 , inverse to...

The relation between the dual and the adjoint Radon transforms

Cnops, J. (1991)

Proceedings of the Winter School "Geometry and Physics"

[For the entire collection see Zbl 0742.00067.]Let P m be the set of hyperplanes σ : x , θ = p in m , S m - 1 the unit sphere of m , E m the exterior of the unit ball, T m the set of hyperplanes not passing through the unit ball, R f ( θ , p ) = σ f ( x ) d x the Radon transform, R # g ( x ) = S m - 1 g ( θ , x , θ ) d S θ its dual. R as operator from L 2 ( m ) to L 2 ( S m - 1 ) × ) is a closable, densely defined operator, R * denotes the operator given by ( R * g ) ( x ) = R # g ( x ) if the integral exists for x m a.e. Then the closure of R * is the adjoint of R . The author shows that the Radon transform and its dual can be linked by two operators...

The structure and representation of n-ary algebras of DNA recombination

Sergei Sverchkov (2011)

Open Mathematics

In this paper we investigate the structure and representation of n-ary algebras arising from DNA recombination, where n is a number of DNA segments participating in recombination. Our methods involve a generalization of the Jordan formalization of observables in quantum mechanics in n-ary splicing algebras. It is proved that every identity satisfied by n-ary DNA recombination, with no restriction on the degree, is a consequence of n-ary commutativity and a single n-ary identity of the degree 3n-2....

The structure of split regular Hom-Poisson algebras

María J. Aragón Periñán, Antonio J. Calderón Martín (2016)

Colloquium Mathematicae

We introduce the class of split regular Hom-Poisson algebras formed by those Hom-Poisson algebras whose underlying Hom-Lie algebras are split and regular. This class is the natural extension of the ones of split Hom-Lie algebras and of split Poisson algebras. We show that the structure theorems for split Poisson algebras can be extended to the more general setting of split regular Hom-Poisson algebras. That is, we prove that an arbitrary split regular Hom-Poisson algebra is of the form = U + j I j with U...

Currently displaying 1921 – 1940 of 2676