Page 1

Displaying 1 – 12 of 12

Showing per page

A note on semidirect sum of Lie algebras

Tadeusz Ostrowski (2013)

Discussiones Mathematicae - General Algebra and Applications

In the paper there are investigated some properties of Lie algebras, the construction which has a wide range of applications like computer sciences (especially to computer visions), geometry or physics, for example. We concentrate on the semidirect sum of algebras and there are extended some theoretic designs as conditions to be a center, a homomorphism or a derivative. The Killing form of the semidirect sum where the second component is an ideal of the first one is considered as well.

A remarkable contraction of semisimple Lie algebras

Dmitri I. Panyushev, Oksana S. Yakimova (2012)

Annales de l’institut Fourier

Recently, E.Feigin introduced a very interesting contraction 𝔮 of a semisimple Lie algebra 𝔤 (see arXiv:1007.0646 and arXiv:1101.1898). We prove that these non-reductive Lie algebras retain good invariant-theoretic properties of 𝔤 . For instance, the algebras of invariants of both adjoint and coadjoint representations of 𝔮 are free, and also the enveloping algebra of 𝔮 is a free module over its centre.

Algèbre de Lie des automorphismes infinitésimaux d'une structure unimodulaire

André Lichnerowicz (1974)

Annales de l'institut Fourier

Une structure unimodulaire est définie sur une variété différentiable par une forme élément de volume. Différentes algèbres de Lie de dimension infinie attachées à une variété unimodulaire sont introduites et leurs idéaux étudiés. Ces idéaux sont semi-simples et de dimension infinie ; aucun idéal non trivial n’admet un idéal supplémentaire. Les dérivations de ces algèbres de Lie sont données par l’algèbre des champs de vecteurs reproduisant la forme de structure à un facteur constant près.

Currently displaying 1 – 12 of 12

Page 1