On irreducible sl (2, R) - modules and sl 2-triples.
Let be a reductive algebraic group, a parabolic subgroup of with unipotent radical , and a closed connected subgroup of which is normalized by . We show that acts on with finitely many orbits provided is abelian. This generalizes a well-known finiteness result, namely the case when is central in . We also obtain an analogous result for the adjoint action of on invariant linear subspaces of the Lie algebra of which are abelian Lie algebras. Finally, we discuss a connection...
We continue investigations that are concerned with the complexity of nilpotent orbits in semisimple Lie algebras. We give a characterization of the spherical nilpotent orbits in terms of minimal Levi subalgebras intersecting them. This provides a kind of canonical form for such orbits. A description minimal non-spherical orbits in all simple Lie algebras is obtained. The theory developed for the adjoint representation is then extended to Vinberg’s -groups. This yields a description of spherical...