On a class of Lie -algebras.
Simple modules for restricted Lie superalgebras are studied. The indecomposability of baby Kac modules and baby Verma modules is proved in some situation. In particular, for the classical Lie superalgebra of type , the baby Verma modules are proved to be simple for any regular nilpotent -character and typical weight . Moreover, we obtain the dimension formulas for projective covers of simple modules with -characters of standard Levi form.
Let denote the class of nilpotent Lie algebras. For any finite-dimensional Lie algebra over an arbitrary field , there exists a smallest ideal of such that . This uniquely determined ideal of is called the nilpotent residual of and is denoted by . In this paper, we define the subalgebra . Set . Define for . By denote the terminal term of the ascending series. It is proved that if and only if is nilpotent. In addition, we investigate the basic properties of a Lie algebra...