Canonical realizations of Lie algebras associated with foliated coadjoint orbits
Nous démontrons que la catégorie de von Neumann est équivalente à la catégorie des cônes autopolaires, facialement homogènes, complexes. Un cône dans un espace hilbertien réel est dit : 1) facialement homogène quand pour toute face de l’opérateur (Projection sur ) (Projection sur ) est une dérivation de (i.e. ) ; 2) complexe quand on s’est donné une structure d’algèbre de Lie complexe sur l’algèbre de Lie réelle des dérivations de , modulo son centre. Nous caractérisons les espaces...
Dans cet article, nous définissons des modules de (co)-homologie , , , , où et sont des algèbres de Lie munies d’une structure supplémentaire (algèbres de Lie croisées), qui satisfont les propriétés usuelles des foncteurs cohomologiques. Si est une -algèbre, nous utilisons ces modules d’homologie pour comparer le groupe d’homologie cyclique avec un analogue additif du groupe de -théorie de Milnor .
We study Hom-Lie superalgebras of Heisenberg type. For 3-dimensional Heisenberg Hom-Lie superalgebras we describe their Hom-Lie super structures, compute the cohomology spaces and characterize their infinitesimal deformations.
Degenerations, contractions and deformations of various algebraic structures play an important role in mathematics and physics. There are many different definitions and special cases of these notions. We try to give a general definition which unifies these notions and shows the connections among them. Here we focus on contractions of Lie algebras and algebraic groups.