The search session has expired. Please query the service again.
A control system is said to be finite if the Lie algebra generated by its vector fields
is finite dimensional. Sufficient conditions for such a system on a compact manifold to be
controllable are stated in terms of its Lie algebra. The proofs make use of the
equivalence theorem of [Ph. Jouan, ESAIM: COCV 16 (2010)
956–973]. and of the existence of an invariant measure on certain compact homogeneous
spaces.
The vertex algebra with central charge may be defined as a module over the universal central extension of the Lie algebra of differential operators on the circle. For an integer , it was conjectured in the physics literature that should have a minimal strong generating set consisting of elements. Using a free field realization of due to Kac–Radul, together with a deformed version of Weyl’s first and second fundamental theorems of
invariant theory for the standard representation of ,...
We prove a series of "going-up" theorems contrasting the structure of semiprime algebras and their subalgebras of invariants under the actions of Lie color algebras.
The half-liberated orthogonal group appears as intermediate quantum group between the orthogonal group , and its free version . We discuss here its basic algebraic properties, and we classify its irreducible representations. The classification of representations is done by using a certain twisting-type relation between and , a non abelian discrete group playing the role of weight lattice, and a number of methods inspired from the theory of Lie algebras. We use these results for showing that...
We present a description of irreducible tensor representations of general linear Lie superalgebras in terms of generalized determinants in the symmetric and exterior superalgebras of a superspace over a field of characteristic zero.
The main goal of this paper is to give a mathematical foundation, serious and consistent, to some parts of Santilli?s isotheory. We study the isotopic liftings of groups and subgroups and we also deal with the differences between an isosubgroup and a subgroup of an isogroup. Finally, some links between this isotheory and the standard groups theory, referred to representation and equivalence relations among groups are shown.
We present a general theorem describing the isomorphisms of the local Lie algebra structures on the spaces of smooth (real-analytic or holomorphic) functions on smooth (resp. real-analytic, Stein) manifolds, as, for example, those given by Poisson or contact structures. We admit degenerate structures as well, which seems to be new in the literature.
Currently displaying 41 –
60 of
60