Displaying 161 – 180 of 1857

Showing per page

Associative and Lie deformations of Poisson algebras

Elisabeth Remm (2012)

Communications in Mathematics

Considering a Poisson algebra as a nonassociative algebra satisfying the Markl-Remm identity, we study deformations of Poisson algebras as deformations of this nonassociative algebra. We give a natural interpretation of deformations which preserve the underlying associative structure and of deformations which preserve the underlying Lie algebra and we compare the associated cohomologies with the Poisson cohomology parametrizing the general deformations of Poisson algebras.

Asymptotic Behaviour of Colength of Varieties of Lie Algebras

Mishchenko, S., Zaicev, M. (2000)

Serdica Mathematical Journal

This project was partially supported by RFBR, grants 99-01-00233, 98-01-01020 and 00-15-96128.We study the asymptotic behaviour of numerical characteristics of polynomial identities of Lie algebras over a field of characteristic 0. In particular we investigate the colength for the cocharacters of polynilpotent varieties of Lie algebras. We prove that there exist polynilpotent Lie varieties with exponential and overexponential colength growth. We give the exact asymptotics for the colength of a product...

Banach manifolds of algebraic elements in the algebra (H) of bounded linear operatorsof bounded linear operators

José Isidro (2005)

Open Mathematics

Given a complex Hilbert space H, we study the manifold 𝒜 of algebraic elements in Z = H . We represent 𝒜 as a disjoint union of closed connected subsets M of Z each of which is an orbit under the action of G, the group of all C*-algebra automorphisms of Z. Those orbits M consisting of hermitian algebraic elements with a fixed finite rank r, (0< r<∞) are real-analytic direct submanifolds of Z. Using the C*-algebra structure of Z, a Banach-manifold structure and a G-invariant torsionfree affine...

Currently displaying 161 – 180 of 1857