Homology for operator algebras. III: Partial isometry homotopy and triangular algebras.
We describe new combinatorial methods for constructing explicit free resolutions of by -modules when is a group of fractions of a monoid where enough lest common multiples exist (“locally Gaussian monoid”), and therefore, for computing the homology of . Our constructions apply in particular to all Artin-Tits groups of finite Coexter type. Technically, the proofs rely on the properties of least common multiples in a monoid.
The notion of free group is defined, a relatively wide collection of groups which enable infinite set summation (called commutative -group), is introduced. Commutative -groups are studied from the set-theoretical point of view and from the point of view of free groups. Commutativity of the operator which is a special kind of inverse limit and factorization, is proved. Tensor product is defined, commutativity of direct product (also a free group construction and tensor product) with the special...
Let p be a prime number. We prove that if G is a compact Lie group with a non-trivial p-subgroup, then the orbit space of the classifying space of the category associated to the G-poset of all non-trivial elementary abelian p-subgroups of G is contractible. This gives, for every G-CW-complex X each of whose isotropy groups contains a non-trivial p-subgroup, a decomposition of X/G as a homotopy colimit of the functor defined over the poset , where sd is the barycentric subdivision. We also...