Displaying 521 – 540 of 671

Showing per page

Some results on G C -flat dimension of modules

Ramalingam Udhayakumar, Intan Muchtadi-Alamsyah, Chelliah Selvaraj (2019)

Commentationes Mathematicae Universitatis Carolinae

In this paper, we study some properties of G C -flat R -modules, where C is a semidualizing module over a commutative ring R and we investigate the relation between the G C -yoke with the C -yoke of a module as well as the relation between the G C -flat resolution and the flat resolution of a module over G F -closed rings. We also obtain a criterion for computing the G C -flat dimension of modules.

Some results on homotopy theory of modules

Zheng-Xu He (1983)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Seguendo le idee presentate nei lavori [1] e [2] si studiano le proprietà dei gruppi di i -omotopia per moduli ed omomorfismi di moduli.

Spaces associated to quadratic endofunctors of the category of groups.

Hans-Joachim Baues, Teimuraz Pirashvili (2005)

Extracta Mathematicae

Square groups are gadgets classifying quadratic endofunctors of the category of groups. Applying such a functor to the Kan simplicial loop group of the 2-dimensional sphere, one obtains a one-connected three-type. We consider the problem of characterization of those three-types X which can be obtained in this way. We solve this problem in some cases, including the case when π2(X) is a finitely generated abelian group. The corresponding stable problem is solved completely.

Split extensions and semidirect products of unitary magmas

Marino Gran, George Janelidze, Manuela Sobral (2019)

Commentationes Mathematicae Universitatis Carolinae

We develop a theory of split extensions of unitary magmas, which includes defining such extensions and describing them via suitably defined semidirect product, yielding an equivalence between the categories of split extensions and of (suitably defined) actions of unitary magmas on unitary magmas. The class of split extensions is pullback stable but not closed under composition. We introduce two subclasses of it that have both of these properties.

Splitting maps and norm bounds for the cyclic cohomology of biflat Banach algebras

Yemon Choi (2010)

Banach Center Publications

We revisit the old result that biflat Banach algebras have the same cyclic cohomology as C, and obtain a quantitative variant (which is needed in separate, joint work of the author on the simplicial and cyclic cohomology of band semigroup algebras). Our approach does not rely on the Connes-Tsygan exact sequence, but is motivated strongly by its construction as found in [2] and [5].

Stable short exact sequences and the maximal exact structure of an additive category

Wolfgang Rump (2015)

Fundamenta Mathematicae

It was recently proved that every additive category has a unique maximal exact structure, while it remained open whether the distinguished short exact sequences of this canonical exact structure coincide with the stable short exact sequences. The question is answered by a counterexample which shows that none of the steps to construct the maximal exact structure can be dropped.

(Strongly) Gorenstein injective modules over upper triangular matrix Artin algebras

Chao Wang, Xiao Yan Yang (2017)

Czechoslovak Mathematical Journal

Let Λ = A M 0 B be an Artin algebra. In view of the characterization of finitely generated Gorenstein injective Λ -modules under the condition that M is a cocompatible ( A , B ) -bimodule, we establish a recollement of the stable category Ginj ( Λ ) ¯ . We also determine all strongly complete injective resolutions and all strongly Gorenstein injective modules over Λ .

Currently displaying 521 – 540 of 671