Previous Page 17

Displaying 321 – 339 of 339

Showing per page

Robust neural network control of robotic manipulators via switching strategy

Lei Yu, Shumin Fei, Jun Huang, Yongmin Li, Gang Yang, Lining Sun (2015)

Kybernetika

In this paper, a robust neural network control scheme for the switching dynamical model of the robotic manipulators has been addressed. Radial basis function (RBF) neural networks are employed to approximate unknown functions of robotic manipulators and a compensation controller is designed to enhance system robustness. The weight update law of the robotic manipulator is based on switched multiple Lyapunov function method and the periodically switching law which is suitable for practical implementation...

Rough semigroups and rough fuzzy semigroups based on fuzzy ideals

Qiumei Wang, Jianming Zhan (2016)

Open Mathematics

In this paper, we firstly introduce a special congruence relation U(μ, t) induced by a fuzzy ideal μ in a semigroup S. Then we define the lower and upper approximations based on a fuzzy ideal in semigroups. We can establish rough semigroups, rough ideals, rough prime ideals, rough fuzzy semigroups, rough fuzzy ideals and rough fuzzy prime ideals according to the definitions of rough sets and rough fuzzy sets. Furthermore, we shall consider the relationships among semigroups and rough semigroups,...

RSK bases and Kazhdan-Lusztig cells

K. N. Raghavan, Preena Samuel, K. V. Subrahmanyam (2012)

Annales de l’institut Fourier

From the combinatorial characterizations of the right, left, and two-sided Kazhdan-Lusztig cells of the symmetric group, “ RSK bases” are constructed for certain quotients by two-sided ideals of the group ring and the Hecke algebra. Applications to invariant theory, over various base rings, of the general linear group and representation theory, both ordinary and modular, of the symmetric group are discussed.

R-trees and the Bieri-Neumann-Strebel invariant.

Gilbert Levitt (1994)

Publicacions Matemàtiques

Let G be a finitely generated group. We give a new characterization of its Bieri-Neumann-Strebel invariant Σ(G), in terms of geometric abelian actions on R-trees. We provide a proof of Brown's characterization of Σ(G) by exceptional abelian actions of G, using geometric methods.

Currently displaying 321 – 339 of 339

Previous Page 17