On factor S-sets of monoids modulo submonoids.
The intention of this paper is to provide an elementary proof of the following known results: Let G be a finite group of the form G = AB. If A is abelian and B has a nilpotent subgroup of index at most 2, then G is soluble.
Let G be a noncyclic abelian p-group and K be an infinite field of finite characteristic p. For every 2-cocycle λ ∈ Z²(G,K*) such that the twisted group algebra is of infinite representation type, we find natural numbers d for which G has infinitely many faithful absolutely indecomposable λ-representations over K of dimension d.
We study the realizability of finite abelian groups as Mislin genera of finitely generated nilpotent groups with finite commutator subgroup. In particular, we give criteria to decide whether a finite abelian group is realizable as the Mislin genus of a direct product of nilpotent groups of a certain specified type. In the case of a positive answer, we also give an effective way of realizing that abelian group as a genus. Further, we obtain some non-realizability results.
We show that finite commutative inverse property loops with elementary abelian inner mapping groups of order are centrally nilpotent of class at most two.
We show that finite commutative inverse property loops with elementary abelian inner mapping groups of order are centrally nilpotent of class at most two.
Let be a finite commutative loop and let the inner mapping group , where is an odd prime number and . We show that is centrally nilpotent of class two.
We conjecture that every finite group G acting on a contractible CW-complex X of dimension 2 has at least one fixed point. We prove this in the case where G is solvable, and under this additional hypothesis, the result holds for X acyclic.