The syntactic monoid of a hypercode.
It is known that (ℤₙ,-ₙ) are examples of entropic quasigroups which are not groups. In this paper we describe the table of characters for quasigroups (ℤₙ,-ₙ).
We study the group of tame automorphisms of a smooth affine -dimensional quadric, which we can view as the underlying variety of . We construct a square complex on which the group admits a natural cocompact action, and we prove that the complex is and hyperbolic. We propose two applications of this construction: We show that any finite subgroup in is linearizable, and that satisfies the Tits alternative.
Local tameness and the finiteness of the catenary degree are two crucial finiteness conditions in the theory of non-unique factorizations in monoids and integral domains. In this note, we refine the notion of local tameness and relate the resulting invariants with the usual tame degree and the -invariant. Finally we present a simple monoid which fails to be locally tame and yet has nice factorization properties.
In [Comput. Math. Appl. 41 (2001), 135--147], A. A. Ungar employs the Möbius gyrovector spaces for the introduction of the hyperbolic trigonometry. This Ungar's work plays a major role in translating some theorems from Euclidean geometry to corresponding theorems in hyperbolic geometry. In this paper we explore the theorems of Stewart and Steiner in the Poincaré disc model of hyperbolic geometry.
We study the -theory of sequences of dual groups and give a complete classification of the -elementary classes by finding simple invariants for them. We show that nonstandard models exist.