On recognition of the projective special linear groups over binary fields.
We extend a result of Rangaswamy about regularity of endomorphism rings of Abelian groups to arbitrary topological Abelian groups. Regularity of discrete quasi-injective modules over compact rings modulo radical is proved. A characterization of torsion LCA groups for which is regular is given.
The paper is concerned with the class of groups satisfying the finite embedding (FE) property. This is a generalization of residually finite groups. In [2] it was asked whether there exist FE-groups which are not residually finite. Here we present such examples. To do this, we construct a family of three-generator soluble FE-groups with torsion-free abelian factors. We study necessary and sufficient conditions for groups from this class to be residually finite. This answers the questions asked in...
It is proved that every uncountable -bounded group and every homogeneous space containing a convergent sequence are resolvable. We find some conditions for a topological group topology to be irresolvable and maximal.