Elementary ...-languages and finite semilattices of groups.
Soient un groupe algébrique réductif connexe défini sur et l’endomorphisme de Frobenius correspondant. Soit un automorphisme rationnel quasi-central de . Nous construisons ci-dessous l’équivalent des représentations de Gelfand-Graev du groupe , lorsque est unipotent et lorsqu’il est semi-simple. Nous montrons de plus que ces représentations vérifient des propriétés semblables à celles vérifiées par les représentations de Gelfand-Graev dans le cas connexe en particulier par rapport aux...
Let be a partial latin square and be a latin square with . We say that is a latin trade if there exists a partial latin square with such that is a latin square. A -homogeneous latin trade is one which intersects each row, each column and each entry either or times. In this paper, we show the existence of -homogeneous latin trades in abelian -groups.
The question of embedding fields into central simple algebras over a number field was the realm of class field theory. The subject of embedding orders contained in the ring of integers of maximal subfields of such an algebra into orders in that algebra is more nuanced. The first such result along those lines is an elegant result of Chevalley [6] which says that with the ratio of the number of isomorphism classes of maximal orders in into which the ring of integers of can be embedded...