Translational hulls of polynomially related semigroups
In this paper, by a travel groupoid is meant an ordered pair such that is a nonempty set and is a binary operation on satisfying the following two conditions for all : Let be a travel groupoid. It is easy to show that if , then if and only if . We say that is on a (finite or infinite) graph if and Clearly, every travel groupoid is on exactly one graph. In this paper, some properties of travel groupoids on graphs are studied.
The notion of travel groupoids was introduced by L. Nebeský in 2006 in connection with a study on geodetic graphs. A travel groupoid is a pair of a set and a binary operation on satisfying two axioms. We can associate a graph with a travel groupoid. We say that a graph has a travel groupoid if the graph associated with the travel groupoid is equal to . Nebeský gave a characterization of finite graphs having a travel groupoid. In this paper, we study travel groupoids on infinite graphs....
We prove that the Pontryagin sphere and the Pontryagin nonorientable surface occur as the Gromov boundary of a 7-systolic group acting geometrically on a 7-systolic normal pseudomanifold of dimension 3.
We introduce two new classes of compacta, called trees of manifolds with boundary and boundary trees of manifolds with boundary. We establish their basic properties.
Cet article, offert à André Lentin lors du colloque du 23 février 1996 organisé en son honneur, a pour objet de montrer que le treillis étiqueté obtenu à partir de l’ordre faible sur un Coxeter fini , et le groupe lui-même, peuvent être construits à partir d’un sous-groupe parabolique quelconque , du quotient associé et d’une fonction de dans . Cette méthode permet en particulier la construction par récurrence des groupes et treillis des quatre familles infinies de Coxeter finis irréductibles...