Displaying 801 – 820 of 856

Showing per page

Travel groupoids

Ladislav Nebeský (2006)

Czechoslovak Mathematical Journal

In this paper, by a travel groupoid is meant an ordered pair ( V , * ) such that V is a nonempty set and * is a binary operation on V satisfying the following two conditions for all u , v V : ( u * v ) * u = u ; if ( u * v ) * v = u , then u = v . Let ( V , * ) be a travel groupoid. It is easy to show that if x , y V , then x * y = y if and only if y * x = x . We say that ( V , * ) is on a (finite or infinite) graph G if V ( G ) = V and E ( G ) = { { u , v } u , v V and u u * v = v } . Clearly, every travel groupoid is on exactly one graph. In this paper, some properties of travel groupoids on graphs are studied.

Travel groupoids on infinite graphs

Jung Rae Cho, Jeongmi Park, Yoshio Sano (2014)

Czechoslovak Mathematical Journal

The notion of travel groupoids was introduced by L. Nebeský in 2006 in connection with a study on geodetic graphs. A travel groupoid is a pair of a set V and a binary operation * on V satisfying two axioms. We can associate a graph with a travel groupoid. We say that a graph G has a travel groupoid if the graph associated with the travel groupoid is equal to G . Nebeský gave a characterization of finite graphs having a travel groupoid. In this paper, we study travel groupoids on infinite graphs....

Trees of manifolds and boundaries of systolic groups

Paweł Zawiślak (2010)

Fundamenta Mathematicae

We prove that the Pontryagin sphere and the Pontryagin nonorientable surface occur as the Gromov boundary of a 7-systolic group acting geometrically on a 7-systolic normal pseudomanifold of dimension 3.

Trees of manifolds with boundary

Paweł Zawiślak (2015)

Colloquium Mathematicae

We introduce two new classes of compacta, called trees of manifolds with boundary and boundary trees of manifolds with boundary. We establish their basic properties.

Treillis de Cayley des groupes de Coxeter finis. Constructions par récurrence et décompositions sur des quotients

Claude Le Conte de Poly-Barbut (1997)

Mathématiques et Sciences Humaines

Cet article, offert à André Lentin lors du colloque du 23 février 1996 organisé en son honneur, a pour objet de montrer que le treillis étiqueté obtenu à partir de l’ordre faible sur un Coxeter fini ( W , S ) , et le groupe lui-même, peuvent être construits à partir d’un sous-groupe parabolique quelconque W J , du quotient associé W J et d’une fonction de W J × J dans S . Cette méthode permet en particulier la construction par récurrence des groupes et treillis des quatre familles infinies de Coxeter finis irréductibles...

Currently displaying 801 – 820 of 856