The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 1281 – 1300 of 10175

Showing per page

Characterization by intersection graph of some families of finite nonsimple groups

Hossein Shahsavari, Behrooz Khosravi (2021)

Czechoslovak Mathematical Journal

For a finite group G , Γ ( G ) , the intersection graph of G , is a simple graph whose vertices are all nontrivial proper subgroups of G and two distinct vertices H and K are adjacent when H K 1 . In this paper, we classify all finite nonsimple groups whose intersection graphs have a leaf and also we discuss the characterizability of them using their intersection graphs.

Characterization of power digraphs modulo n

Uzma Ahmad, Syed Husnine (2011)

Commentationes Mathematicae Universitatis Carolinae

A power digraph modulo n , denoted by G ( n , k ) , is a directed graph with Z n = { 0 , 1 , , n - 1 } as the set of vertices and E = { ( a , b ) : a k b ( mod n ) } as the edge set, where n and k are any positive integers. In this paper we find necessary and sufficient conditions on n and k such that the digraph G ( n , k ) has at least one isolated fixed point. We also establish necessary and sufficient conditions on n and k such that the digraph G ( n , k ) contains exactly two components. The primality of Fermat number is also discussed.

Characterization of the alternating groups by their order and one conjugacy class length

Alireza Khalili Asboei, Reza Mohammadyari (2016)

Czechoslovak Mathematical Journal

Let G be a finite group, and let N ( G ) be the set of conjugacy class sizes of G . By Thompson’s conjecture, if L is a finite non-abelian simple group, G is a finite group with a trivial center, and N ( G ) = N ( L ) , then L and G are isomorphic. Recently, Chen et al. contributed interestingly to Thompson’s conjecture under a weak condition. They only used the group order and one or two special conjugacy class sizes of simple groups and characterized successfully sporadic simple groups (see Li’s PhD dissertation). In...

Characterization of the inessential endomorphisms in the category of Abelian group.

S. Abdelalim, H. Essannouni (2003)

Publicacions Matemàtiques

An endomorphism f of an Abelian group A is said to be inessentia! (in the category of Abelian groups) if it can be extended to an endomorphism of any Abelian group which contains A as a subgroup. In this paper we show that f is as above if and only if (f - v idA)(A) is contained in the rnaximal divisible subgroup of A for some v belonging to Z.

Currently displaying 1281 – 1300 of 10175