Displaying 641 – 660 of 1792

Showing per page

Normal Subgroup of Product of Groups

Hiroyuki Okazaki, Kenichi Arai, Yasunari Shidama (2011)

Formalized Mathematics

In [6] it was formalized that the direct product of a family of groups gives a new group. In this article, we formalize that for all j ∈ I, the group G = Πi∈IGi has a normal subgroup isomorphic to Gj. Moreover, we show some relations between a family of groups and its direct product.

Normalizers and self-normalizing subgroups II

Boris Širola (2011)

Open Mathematics

Let 𝕂 be a field, G a reductive algebraic 𝕂 -group, and G 1 ≤ G a reductive subgroup. For G 1 ≤ G, the corresponding groups of 𝕂 -points, we study the normalizer N = N G(G 1). In particular, for a standard embedding of the odd orthogonal group G 1 = SO(m, 𝕂 ) in G = SL(m, 𝕂 ) we have N ≅ G 1 ⋊ µm( 𝕂 ), the semidirect product of G 1 by the group of m-th roots of unity in 𝕂 . The normalizers of the even orthogonal and symplectic subgroup of SL(2n, 𝕂 ) were computed in [Širola B., Normalizers and self-normalizing...

Obstructions for deformations of complexes

Frauke M. Bleher, Ted Chinburg (2013)

Annales de l’institut Fourier

We develop two approaches to obstruction theory for deformations of derived isomorphism classes of complexes of modules for a profinite group G over a complete local Noetherian ring A of positive residue characteristic.

On a formula for the asymptotic dimension of free products

G. C. Bell, A. N. Dranishnikov, J. E. Keesling (2004)

Fundamenta Mathematicae

We prove an exact formula for the asymptotic dimension (asdim) of a free product. Our main theorem states that if A and B are finitely generated groups with asdim A = n and asdim B ≤ n, then asdim (A*B) = max n,1.

Currently displaying 641 – 660 of 1792