Normal and Power Endomorphisms of a Group.
In [6] it was formalized that the direct product of a family of groups gives a new group. In this article, we formalize that for all j ∈ I, the group G = Πi∈IGi has a normal subgroup isomorphic to Gj. Moreover, we show some relations between a family of groups and its direct product.
Let be a field, G a reductive algebraic -group, and G 1 ≤ G a reductive subgroup. For G 1 ≤ G, the corresponding groups of -points, we study the normalizer N = N G(G 1). In particular, for a standard embedding of the odd orthogonal group G 1 = SO(m, ) in G = SL(m, ) we have N ≅ G 1 ⋊ µm(), the semidirect product of G 1 by the group of m-th roots of unity in . The normalizers of the even orthogonal and symplectic subgroup of SL(2n, ) were computed in [Širola B., Normalizers and self-normalizing...
We develop two approaches to obstruction theory for deformations of derived isomorphism classes of complexes of modules for a profinite group over a complete local Noetherian ring of positive residue characteristic.
We prove an exact formula for the asymptotic dimension (asdim) of a free product. Our main theorem states that if A and B are finitely generated groups with asdim A = n and asdim B ≤ n, then asdim (A*B) = max n,1.