The Homotype Type of a Combinatorially Aspherical Presentation.
We provide a solution to the isomorphism problem for torsion-free relatively hyperbolic groups with abelian parabolics. As special cases we recover solutions to the isomorphism problem for: (i) torsion-free hyperbolic groups (Sela, [60] and unpublished); and (ii) finitely generated fully residually free groups (Bumagin, Kharlampovich and Miasnikov [14]). We also give a solution to the homeomorphism problem for finite volume hyperbolic -manifolds, for . In the course of the proof of the main result,...
Let G be a group with all subgroups subnormal. A normal subgroup N of G is said to be G-minimax if it has a finite G-invariant series whose factors are abelian and satisfy either max-G or min- G. It is proved that if the normal closure of every element of G is G-minimax then G is nilpotent and the normal closure of every element is minimax. Further results of this type are also obtained.
The Hurwitz action of the n-braid group Bₙ on the n-fold direct product of the m-braid group is studied. We show that the orbit of any n- tuple of the n standard generators of consists of the (n-1)th powers of n+1 elements.
The Ore conjecture, posed in 1951, states that every element of every finite non-abelian simple group is a commutator. Despite considerable effort, it remains open for various infinite families of simple groups. In this paper we develop new strategies, combining character-theoretic methods with other ingredients, and use them to establish the conjecture.
Topological Quantum Field Theories are closely related to representations of Mapping Class Groups of surfaces. Considering the case of the TQFTs derived from the Kauffman bracket, we describe the central extension coming from this representation, which is just a projective extension.
We compare the special rank of the factors of the upper central series and terms of the lower central series of a group. As a consequence we are able to show some generalizations of a theorem of Reinhold Baer.
Let G be a group generated by r elements . Among the reduced words in of length n some, say , represent the identity element of the group G. It has been shown in a combinatorial way that the 2nth root of has a limit, called the cogrowth exponent with respect to the generators . We show by analytic methods that the numbers vary regularly, i.e. the ratio is also convergent. Moreover, we derive new precise information on the domain of holomorphy of γ(z), the generating function associated...
The profinite topology on any abstract group , is one such that the fundamental system of neighborhoods of the identity is given by all its subgroups of finite index. We say that a group has the Ribes-Zalesskii property of rank , or is RZ with a natural number, if any product of finitely generated subgroups is closed in the profinite topology on . And a group is said to have the Ribes-Zalesskii property or is RZ if it is RZ for any natural number . In this paper we characterize groups...