-systems of finite simple groups
We present a computer-assisted analysis of combinatorial properties of the Cayley graphs of certain finitely generated groups: given a group with a finite set of generators, we study the density of the corresponding Cayley graph, that is, the least upper bound for the average vertex degree (= number of adjacent edges) of any finite subgraph. It is known that an -generated group is amenable if and only if the density of the corresponding Cayley graph equals to . We test amenable and non-amenable...
We discuss Bass's conjecture on the vanishing of the Hattori-Stallings rank from the viewpoint of geometric group theory. It is noted that groups without u-elements satisfy this conjecture. This leads in particular to a simple proof of the conjecture in the case of groups of subexponential growth.
It is proved that the group Sp10(ℤ) is generated by an involution and an element of order 3.