Displaying 41 – 60 of 150

Showing per page

Coxeter polynomials of Salem trees

Charalampos A. Evripidou (2015)

Colloquium Mathematicae

We compute the Coxeter polynomial of a family of Salem trees, and also the limit of the spectral radii of their Coxeter transformations as the number of their vertices tends to infinity. We also prove that if z is a root of multiplicities m , . . . , m k for the Coxeter polynomials of the trees , . . . , k respectively, then z is a root for the Coxeter polynomial of their join, of multiplicity at least m i n m - m , . . . , m - m k where m = m + + m k .

Fully commutative Kazhdan-Lusztig cells

Richard M. Green, Jozsef Losonczy (2001)

Annales de l’institut Fourier

We investigate the compatibility of the set of fully commutative elements of a Coxeter group with the various types of Kazhdan-Lusztig cells using a canonical basis for a generalized version of the Temperley-Lieb algebra.

Generalized descent algebra and construction of irreducible characters of hyperoctahedral groups

Cédric Bonnafé, Christophe Hohlweg (2006)

Annales de l’institut Fourier

We construct a subalgebra Σ ( W n ) of dimension 2 · 3 n - 1 of the group algebra of the Weyl group W n of type B n containing its usual Solomon algebra and the one of 𝔖 n : Σ ( W n ) is nothing but the Mantaci-Reutenauer algebra but our point of view leads us to a construction of a surjective morphism of algebras Σ ( W n ) Z Irr ( W n ) . Jöllenbeck’s construction of irreducible characters of the symmetric group by using the coplactic equivalence classes can then be transposed to W n . In an appendix, P. Baumann and C. Hohlweg present in an explicit and...

Generalized Induction of Kazhdan-Lusztig cells

Jérémie Guilhot (2009)

Annales de l’institut Fourier

Following Lusztig, we consider a Coxeter group W together with a weight function. Geck showed that the Kazhdan-Lusztig cells of W are compatible with parabolic subgroups. In this paper, we generalize this argument to some subsets of W which may not be parabolic subgroups. We obtain two applications: we show that under specific technical conditions on the parameters, the cells of certain parabolic subgroups of W are cells in the whole group, and we decompose the affine Weyl group of type G into left...

Currently displaying 41 – 60 of 150