Displaying 101 – 120 of 150

Showing per page

Receding polar regions of a spherical building and the center conjecture

Bernhard Mühlherr, Richard M. Weiss (2013)

Annales de l’institut Fourier

We introduce the notion of a polar region of a spherical building and use some simple observations about polar regions to give elementary proofs of various fundamental properties of root groups. We combine some of these observations with results of Timmesfeld, Balser and Lytchak to give a new proof of the center conjecture for convex chamber subcomplexes of thick spherical buildings.

Réseaux de Coxeter-Davis et commensurateurs

Frédéric Haglund (1998)

Annales de l'institut Fourier

For each integer k 6 and each finite graph L , we construct a Coxeter group W and a non positively curved polygonal complex A on which W acts properly cocompactly, such that each polygon of A has k edges, and the link of each vertex of A is isomorphic to L . If L is a “generalized m -gon”, then A is a Tits building modelled on a reflection group of the hyperbolic plane. We give a condition on Aut ( L ) for Aut ( A ) to be non enumerable (which is satisfied if L is a thick classical generalized m -gon). On the other hand,...

Singularités génériques des variétés de Schubert covexillaires

Aurélie Cortez (2001)

Annales de l’institut Fourier

On montre que les composantes irréductibles du lieu singulier d’une variété de Schubert dans G L n / B , associée à une permutation covexillaire, sont paramétrées par certains des points coessentiels du graphe de la permutation. On donne une description explicite de ces composantes et l’on décrit la singularité le long de chacune d’entre elles.

Currently displaying 101 – 120 of 150