Displaying 21 – 40 of 241

Showing per page

All CAT(0) boundaries of a group of the form H × K are CE equivalent

Christopher Mooney (2009)

Fundamenta Mathematicae

M. Bestvina has shown that for any given torsion-free CAT(0) group G, all of its boundaries are shape equivalent. He then posed the question of whether they satisfy the stronger condition of being cell-like equivalent. In this article we prove that the answer is "Yes" in the situation where the group in question splits as a direct product with infinite factors. We accomplish this by proving an interesting theorem in shape theory.

Amenability and Ramsey theory

Justin Tatch Moore (2013)

Fundamenta Mathematicae

The purpose of this article is to connect the notion of the amenability of a discrete group with a new form of structural Ramsey theory. The Ramsey-theoretic reformulation of amenability constitutes a considerable weakening of the Følner criterion. As a by-product, it will be shown that in any non-amenable group G, there is a subset E of G such that no finitely additive probability measure on G measures all translates of E equally. The analysis of discrete groups will be generalized to the setting...

Amenable groups and cellular automata

Tullio G. Ceccherini-Silberstein, Antonio Machi, Fabio Scarabotti (1999)

Annales de l'institut Fourier

We show that the theorems of Moore and Myhill hold for cellular automata whose universes are Cayley graphs of amenable finitely generated groups. This extends the analogous result of A. Machi and F. Mignosi “Garden of Eden configurations for cellular automata on Cayley graphs of groups” for groups of sub-exponential growth.

Around the Borromean link.

José María Montesinos Amilibia (2008)

RACSAM

This is a survey of some consequences of the fact that the fundamental group of the orbifold with singular set the Borromean link and isotropy cyclic of order 4 is a universal kleinian group.

Asymptotic dimension of one relator groups

Dmitry Matsnev (2008)

Colloquium Mathematicae

We show that one relator groups viewed as metric spaces with respect to the word-length metric have finite asymptotic dimension in the sense of Gromov, and we give an improved estimate of that dimension in terms of the relator length. The construction is similar to one of Bell and Dranishnikov, but we produce a sharper estimate.

Au bord de certains polyèdres hyperboliques

Marc Bourdon (1995)

Annales de l'institut Fourier

Le cadre de cet article est celui des groupes et des espaces hyperboliques de M.  Gromov. Il est motivé par la question suivante : comment différencier deux groupes hyperboliques à quasi-isométrie près ? On illustre ce problème en détaillant un exemple de M. Gromov issu de Asymptotic invariants for infinite groups. On décrit une famille infinie de groupes hyperboliques, deux à deux non quasi-isométriques, de bord la courbe de Menger. La méthode consiste à étudier leur structure quasi-conforme au...

Bouts d'un groupe opérant sur la droite, I : théorie algébrique

Gaël-Nicolas Meigniez (1990)

Annales de l'institut Fourier

On étudie les morphismes d’un groupe infini discret Π dans un groupe de Lie G contenu dans le groupe des difféomorphismes de la droite réelle. À un tel morphisme H , on associe deux ensembles de “bouts” de Π “dans la direction” H . On calcule le nombre de bouts dans plusieurs situations. Dans le cas particulier où Π est de type fini et où G est le groupe des translations, Π n’a qu’un bout dans la direction H si, et seulement si, ils vérifient la propriété de Bieri-Neumann-Strebel.

Currently displaying 21 – 40 of 241