Erratum to: Homology stability for outer automorphism groups of free groups.
Numerical estimates are given for the spectral radius of simple random walks on Cayley graphs. Emphasis is on the case of the fundamental group of a closed surface, for the usual system of generators.
Dans cet article, on montre que l’espace des groupes marqués est un sous-espace fermé d’un ensemble de Cantor dont la dimension de Hausdorff est infinie. On prouve que la dimension de Minkowski de cet espace est infinie en exhibant des sous-ensembles de groupes marqués à petite simplification dont les dimensions de Minkowski sont arbitrairement grandes. On donne une estimation des dimensions de Minkowski de sous-espaces de groupes à un relateur. On démontre enfin que les dimensions de Minkowski...
A group has all of its subgroups normal-by-finite if is finite for all subgroups of . The Tarski-groups provide examples of -groups ( a “large” prime) of nonlocally finite groups in which every subgroup is normal-by-finite. The aim of this paper is to prove that a -group with every subgroup normal-by-finite is locally finite. We also prove that if for every subgroup of , then contains an Abelian subgroup of index at most .
A result by Dehornoy (1992) says that every nontrivial braid admits a -definite expression, defined as a braid word in which the generator with maximal index appears with exponents that are all positive, or all negative. This is the ground result for ordering braids. In this paper, we enhance this result and prove that every braid admits a -definite word expression that, in addition, is quasi-geodesic. This establishes a longstanding conjecture. Our proof uses the dual braid monoid and a new...
We prove that the Cayley graphs of are expanders with respect to the projection of any fixed elements in generating a Zariski dense subgroup.