Displaying 61 – 80 of 2185

Showing per page

A note on central automorphisms of groups

Giovanni Cutolo (1992)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

A characterization of central automorphisms of groups is given. As an application, we obtain a new proof of the centrality of power automorphisms.

A note on groups with few isomorphism classes of subgroups

Francesco de Giovanni, Alessio Russo (2016)

Colloquium Mathematicae

The structure of infinite groups in which any two (proper) subgroups of the same cardinality are isomorphic is described within the universe of locally graded groups. The corresponding problem for finite groups was considered by R. Armstrong (1958).

A note on infinite a S -groups

Reza Nikandish, Babak Miraftab (2015)

Czechoslovak Mathematical Journal

Let G be a group. If every nontrivial subgroup of G has a proper supplement, then G is called an a S -group. We study some properties of a S -groups. For instance, it is shown that a nilpotent group G is an a S -group if and only if G is a subdirect product of cyclic groups of prime orders. We prove that if G is an a S -group which satisfies the descending chain condition on subgroups, then G is finite. Among other results, we characterize all abelian groups for which every nontrivial quotient group is an a S -group....

A note on supersoluble maximal subgroup and theta-pairs.

James C. Beidleman, Howard Smith (1993)

Publicacions Matemàtiques

A θ-pair for a maximal subgroup M of a group G is a pair (A, B) of subgroups such that B is a maximal G-invariant subgroup of A with B but not A contained in M. θ-pairs are considered here in some groups having supersoluble maximal subgroups.

Currently displaying 61 – 80 of 2185