Displaying 101 – 120 of 126

Showing per page

Groups with Restricted Conjugacy Classes

de Giovanni, F., Russo, A., Vincenzi, G. (2002)

Serdica Mathematical Journal

Let F C 0 be the class of all finite groups, and for each nonnegative integer n define by induction the group class FC^(n+1) consisting of all groups G such that for every element x the factor group G/CG ( <x>^G ) has the property FC^n . Thus FC^1 -groups are precisely groups with finite conjugacy classes, and the class FC^n obviously contains all finite groups and all nilpotent groups with class at most n. In this paper the known theory of FC-groups is taken as a model, and it is shown that...

Groups with small deviation for non-subnormal subgroups

Leonid Kurdachenko, Howard Smith (2009)

Open Mathematics

We introduce the notion of the non-subnormal deviation of a group G. If the deviation is 0 then G satisfies the minimal condition for nonsubnormal subgroups, while if the deviation is at most 1 then G satisfies the so-called weak minimal condition for such subgroups (though the converse does not hold). Here we present some results on groups G that are either soluble or locally nilpotent and that have deviation at most 1. For example, a torsion-free locally nilpotent with deviation at most 1 is nilpotent,...

Groups with the weak minimal condition for non-subnormal subgroups II

Leonid A. Kurdachenko, Howard Smith (2005)

Commentationes Mathematicae Universitatis Carolinae

Let G be a group with the property that there are no infinite descending chains of non-subnormal subgroups of G for which all successive indices are infinite. The main result is that if G is a locally (soluble-by-finite) group with this property then either G has all subgroups subnormal or G is a soluble-by-finite minimax group. This result fills a gap left in an earlier paper by the same authors on groups with the stated property.

Group-theoretic conditions under which closed aspherical manifolds are covered by Euclidean space

Hanspeter Fischer, David G. Wright (2003)

Fundamenta Mathematicae

Hass, Rubinstein, and Scott showed that every closed aspherical (irreducible) 3-manifold whose fundamental group contains the fundamental group of a closed aspherical surface, is covered by Euclidean space. This theorem does not generalize to higher dimensions. However, we provide geometric tools with which variations of this theorem can be proved in all dimensions.

Growth functions for some uniformly amenable groups

Janusz Dronka, Bronislaw Wajnryb, Paweł Witowicz, Kamil Orzechowski (2017)

Open Mathematics

We present a simple constructive proof of the fact that every abelian discrete group is uniformly amenable. We improve the growth function obtained earlier and find the optimal growth function in a particular case. We also compute a growth function for some non-abelian uniformly amenable group.

Currently displaying 101 – 120 of 126