Displaying 1321 – 1340 of 2186

Showing per page

Soluble Groups with Many Černikov Quotients

Silvana Franciosi, Francesco de Giovanni (1985)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si studiano i gruppi risolubili non di Černikov a quozienti propri di Černikov. Nel caso periodico tali gruppi sono tutti e soli i prodotti semidiretti H N con N p -gruppo abeliano elementare infinito e H gruppo irriducibile di automorfismi di N che sia infinito e di Černikov. Nel caso non periodico invece si riconduce tale studio a quello dei moduli a quozienti...

Solvable groups with many BFC-subgroups.

O. D. Artemovych (2000)

Publicacions Matemàtiques

We characterize the solvable groups without infinite properly ascending chains of non-BFC subgroups and prove that a non-BFC group with a descending chain whose factors are finite or abelian is a Cernikov group or has an infinite properly descending chain of non-BFC subgroups.

Some Algebraic Properties of Machine Poset of Infinite Words

Aleksandrs Belovs (2008)

RAIRO - Theoretical Informatics and Applications

The complexity of infinite words is considered from the point of view of a transformation with a Mealy machine that is the simplest model of a finite automaton transducer. We are mostly interested in algebraic properties of the underlying partially ordered set. Results considered with the existence of supremum, infimum, antichains, chains and density aspects are investigated.

Some commutativity criteria

John C. Lennox, A. Mohammadi Hassanabadi, James Wiegold (1990)

Rendiconti del Seminario Matematico della Università di Padova

Some generalized Coxeter groups and their orbifolds.

Marcel Hagelberg, Rubén A. Hidalgo (1997)

Revista Matemática Iberoamericana

In this note we construct examples of geometric 3-orbifolds with (orbifold) fundamental group isomorphic to a (Z-extension of a) generalized Coxeter group. Some of these orbifolds have either euclidean, spherical or hyperbolic structure. As an application, we obtain an alternative proof of theorem 1 of Hagelberg, Maclaughlan and Rosenberg in [5]. We also obtain a similar result for generalized Coxeter groups.

Currently displaying 1321 – 1340 of 2186