Displaying 121 – 140 of 149

Showing per page

Sur le groupe fondamental de l'espace des noeuds

André Gramain (1977)

Annales de l'institut Fourier

On déduit par générateurs et relations, pour chaque composante de cet espace, un sous-groupe du groupe fondamental π 1 ( P l ( S 1 , S 3 ) ) . Les générateurs ont été trouvés à partir de considérations géométriques ; cependant les démonstrations sont de caractère algébrique.

Sur les représentations de Krammer génériques

Ivan Marin (2007)

Annales de l’institut Fourier

Nous définissons une représentation des groupes d’Artin de type A D E par monodromie de systèmes KZ généralisés, dont nous montrons qu’elle est isomorphe à la représentation de Krammer généralisée définie originellement par A.M.Cohen et D.Wales, et indépendamment par F.Digne. Cela implique que tous les groupes d’Artin purs de type sphérique sont résiduellement nilpotents-sans-torsion, donc (bi-)ordonnables. En utilisant cette construction nous montrons que ces représentations irréductibles sont Zariski-denses...

Sur les treillis de Coxeter finis

C. Le Conte de Poly-Barbut (1994)

Mathématiques et Sciences Humaines

Björner (1984) a montré que l’ordre faible de Bruhat défini sur un groupe de Coxeter fini (Bourbaki 1969) est un treillis. Dans le cas du groupe symétrique S n ce résultat (treillis permutoèdre) a été prouvé par Guilbaud-Rosenstiehl (1963). Dans ce papier nous montrons que des propriétés connues des treillis permutoèdres peuvent s’étendre à tous les treillis de Coxeter finis et qu’inversement des propriétés démontrées sur tous les Coxeter finis ont des retombées intéressantes sur les permutoèdres....

Currently displaying 121 – 140 of 149