The upper central series of some matrix groups
We study the structure of the virtual braid group. It is shown that the virtual braid group is a semi-direct product of the virtual pure braid group and the symmetric group. Also, it is shown that the virtual pure braid group is a semi-direct product of free groups. From these results we obtain a normal form of words in the virtual braid group. We introduce the concept of a universal braid group. This group contains the classical braid group and has as quotients the singular braid group, virtual...
We define the Yokonuma-Temperley-Lieb algebra as a quotient of the Yokonuma-Hecke algebra over a two-sided ideal generated by an expression analogous to the one of the classical Temperley-Lieb algebra. The main theorem provides necessary and sufficient conditions for the Markov trace defined on the Yokonuma-Hecke algebra to pass through to the quotient algebra, leading to a sequence of knot invariants which coincide with the Jones polynomial.
We review the appearance of the braid group in statistical physics. In particular, we explain its relevance to the anyon model of fractional statistics and conformal field theory.
For an order embedding of a partly ordered group into an -group a topology is introduced on which is defined by a family of valuations on . Some density properties of sets , and ( being -ideals in ) in the topological space are then investigated, each of them being equivalent to the statement that is a strong theory of quasi-divisors.