Invariant theory of G2 and Spin7.
The search session has expired. Please query the service again.
Previous Page 2
Gerald W. Schwarz (1988)
Commentarii mathematici Helvetici
Michel Brion (1983)
Annales de l'institut Fourier
Soit un groupe algébrique semi-simple complexe, un sous-groupe unipotent maximal de , un tore maximal de normalisant . Si est un -module rationnel de dimension finie, alors opère sur l’algèbre des fonctions polynomiales sur ; la structure de -module de est décrite par la -algèbre des -invariants de . Cette algèbre est de type fini et multigraduée (par le degré de et le poids par rapport à ). On donne une formule intégrale pour la série de Poincaré de cette algèbre graduée....
David L. Wehlau (2013)
Journal of the European Mathematical Society
Let be any field of characteristic . It is well-known that there are exactly inequivalent indecomposable representations of defined over . Thus if is any finite dimensional -representation there are non-negative integers such that . It is also well-known there is a unique (up to equivalence) dimensional irreducible complex representation of given by its action on the space of forms. Here we prove a conjecture, made by R. J. Shank, which reduces the computation of the ring...
Gerry W. Schwarz, David L. Wehlau (1998)
Annales de l'institut Fourier
We consider problems in invariant theory related to the classification of four vector subspaces of an -dimensional complex vector space. We use castling techniques to quickly recover results of Howe and Huang on invariants. We further obtain information about principal isotropy groups, equidimensionality and the modules of covariants.
Stephen Donkin (1992)
Inventiones mathematicae
Teodor Banica, Roland Vergnioux (2010)
Annales de l’institut Fourier
The half-liberated orthogonal group appears as intermediate quantum group between the orthogonal group , and its free version . We discuss here its basic algebraic properties, and we classify its irreducible representations. The classification of representations is done by using a certain twisting-type relation between and , a non abelian discrete group playing the role of weight lattice, and a number of methods inspired from the theory of Lie algebras. We use these results for showing that...
Baptiste Calmès, Viktor Petrov, Kirill Zainoulline (2013)
Annales scientifiques de l'École Normale Supérieure
Let be a split semisimple linear algebraic group over a field and let be a split maximal torus of . Let be an oriented cohomology (algebraic cobordism, connective -theory, Chow groups, Grothendieck’s , etc.) with formal group law . We construct a ring from and the characters of , that we call a formal group ring, and we define a characteristic ring morphism from this formal group ring to where is the variety of Borel subgroups of . Our main result says that when the torsion index...
Garibaldi, R.Skip, Quéguiner-Mathieu, Anne, Tignol, Jean-Pierre (2001)
Documenta Mathematica
Gunter Malle, Kay Magaard (1998)
Manuscripta mathematica
Martin Marjoram (1997)
Extracta Mathematicae
Solomon, S. (2005)
Journal of Lie Theory
G. Lusztig (1977)
Inventiones mathematicae
Gupta, Chandra Kanta, Panov, A.N. (2004)
Sibirskij Matematicheskij Zhurnal
Robert E. Kottwitz (1985)
Compositio Mathematica
Michel Enguehard (1991)
Mathematische Zeitschrift
Yu Chen (1994)
Rendiconti del Seminario Matematico della Università di Padova
Busch, Cornelia Minette (2008)
The New York Journal of Mathematics [electronic only]
Previous Page 2