On Certain Representations of Semi-Simple Algebraic Groups and the Arithmetic of the Corresponding Invariants.
Let be a reductive complex algebraic group, and let denote the algebra of invariant polynomial functions on the direct sum of copies of the representations space of . There is a smallest integer such that generators and relations of can be obtained from those of by polarization and restitution for all . We bound and the degrees of generators and relations of , extending results of Vust. We apply our techniques to compute the invariant theory of binary cubics.
The aim of this paper is to extend the results of [BB-Ś2] concerning geometric quotients of actions of SL(2) to the case of good quotients. Thus the results of the present paper can be applied to any action of SL(2) on a complete smooth algebraic variety, while the theorems proved in [BB-Ś2] concerned only special situations.