The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 41 – 60 of 147

Showing per page

On lattice automorphisms of the special linear group

Mauro Costantini (1989)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We show, with a counterexample, that proposition 3 in [2], as it stands, is not correct; we prove however that by changing the hypothesis the thesis of the proposition remains still valid.

On normal abelian subgroups in parabolic groups

Gerhard Röhrle (1998)

Annales de l'institut Fourier

Let G be a reductive algebraic group, P a parabolic subgroup of G with unipotent radical P u , and A a closed connected subgroup of P u which is normalized by P . We show that P acts on A with finitely many orbits provided A is abelian. This generalizes a well-known finiteness result, namely the case when A is central in P u . We also obtain an analogous result for the adjoint action of P on invariant linear subspaces of the Lie algebra of P u which are abelian Lie algebras. Finally, we discuss a connection...

On quasihomogeneous manifolds – via Brion-Luna-Vust theorem

Marco Andreatta, Jarosław A. Wiśniewski (2003)

Bollettino dell'Unione Matematica Italiana

We consider a smooth projective variety X on which a simple algebraic group G acts with an open orbit. We discuss a theorem of Brion-Luna-Vust in order to relate the action of G with the induced action of G on the normal bundle of a closed orbit of the action. We get effective results in case G = S L n and dim X 2 n - 2 .

Currently displaying 41 – 60 of 147