Space-time coordinate transformations in continuum mechanics invariable equations of thermomechanics
Let be a connected, reductive algebraic group over an algebraically closed field of zero or good and odd characteristic. We characterize spherical conjugacy classes in as those intersecting only Bruhat cells in corresponding to involutions in the Weyl group of .
Let be a local non-archimedean field. The set of all equivalence classes of irreducible spherical representations of is described in the first part of the paper. In particular, it is shown that each irreducible spherical representation is parabolically induced by an unramified character. Bernstein’s result on the irreducibility of the parabolically induced representations of by irreducible unitary ones, and Ol’shanskij’s construction of complementary series give directly a description of all...
Using the theory of spherical varieties, we give a type independent very short proof of Wahl’s conjecture for cominuscule homogeneous varieties for all primes different from 2.