Abstract homomorphisms of simple algebraic groups
The notion of monoidal equivalence for compact quantum groups was recently introduced by Bichon, De Rijdt and Vaes. In this paper we prove that there is a natural bijective correspondence between actions of monoidally equivalent quantum groups on unital -algebras or on von Neumann algebras. This correspondence turns out to be very useful to obtain the behavior of Poisson and Martin boundaries under monoidal equivalence of quantum groups. Finally, we apply these results to identify the Poisson boundary...
In this paper we construct and study an action of the affine braid group associated with a semi-simple algebraic group on derived categories of coherent sheaves on various varieties related to the Springer resolution of the nilpotent cone. In particular, we describe explicitly the action of the Artin braid group. This action is a “categorical version” of Kazhdan-Lusztig-Ginzburg’s construction of the affine Hecke algebra, and is used in particular by the first author and I. Mirković in the course...
On étudie la relation entre le -rang des variétés abéliennes en caractéristique et la stratification de Kottwitz-Rapoport de la fibre spéciale en de l’espace de module des variétés abéliennes principalement polarisées avec structure de niveau de type Iwahori en . En particulier, on démontre la densité du lieu ordinaire dans cette fibre spéciale.