Algorithmic orbit classification for some Borel group actions
We prove that any topological group of a non-measurable cardinality is hereditarily paracompact and strongly σ-discrete as soon as it is submaximal. Consequently, such a group is zero-dimensional. Examples of uncountable maximal separable spaces are constructed in ZFC.
Let G be a countably infinite group. We show that for every finite absolute coretract S, there is a regular left invariant topology on G whose ultrafilter semigroup is isomorphic to S. As consequences we prove that (1) there is a right maximal idempotent in βG∖G which is not strongly right maximal, and (2) for each combination of the properties of being extremally disconnected, irresolvable, and nodec, except for the combination (-,-,+), there is a corresponding regular almost maximal left invariant...
Let and be groups and let be an extension of by . Given a property of group compactifications, one can ask whether there exist compactifications and of and such that the universal -compactification of is canonically isomorphic to an extension of by . We prove a theorem which gives necessary and sufficient conditions for this to occur for general properties and then apply this result to the almost periodic and weakly almost periodic compactifications of .
We give a complete characterization of the locally compact groups that are non elementary Gromov-hyperbolic and amenable. They coincide with the class of mapping tori of discrete or continuous one-parameter groups of compacting automorphisms. We moreover give a description of all Gromov-hyperbolic locally compact groups with a cocompact amenable subgroup: modulo a compact normal subgroup, these turn out to be either rank one simple Lie groups, or automorphism groups of semiregular trees acting doubly...