The Characters of some Representations of Harish-Chandra.
Let G be a group and P G be the Boolean algebra of all subsets of G. A mapping Δ: P G → P G defined by Δ(A) = {g ∈ G: gA ∩ A is infinite} is called the combinatorial derivation. The mapping Δ can be considered as an analogue of the topological derivation d: P X→ P X, A ↦ A d, where X is a topological space and A d is the set of all limit points of A. We study the behaviour of subsets of G under action of Δ and its inverse mapping ∇. For example, we show that if G is infinite and I is an ideal in...
Let G be a maximally almost periodic (MAP) Abelian group and let ℬ be a boundedness on G in the sense of Vilenkin. We study the relations between ℬ and the Bohr topology of G for some well known groups with boundedness (G,ℬ). As an application, we prove that the Bohr topology of a topological group which is topologically isomorphic to the direct product of a locally convex space and an -group, contains “many” discrete C-embedded subsets which are C*-embedded in their Bohr compactification. This...
Let G be a locally compact group with cocompact connected component. We prove that the assembly map from the topological K-theory of G to the K-theory of the reduced C*-algebra of G is an isomorphism. The same is shown for the groups of k-rational points of any linear algebraic group over a local field k of characteristic zero.
We describe explicitly the group of transverse diffeomorphisms of several types of minimal linear foliations on the torus , . We show in particular that non-quadratic foliations are rigid, in the sense that their only transverse diffeomorphisms are and translations. The description derives from a general formula valid for the group of transverse diffeomorphisms of any minimal Lie foliation on a compact manifold. Our results generalize those of P. Donato and P. Iglesias for , P. Iglesias and...