The differential form method for finding symmetries.
In memory of Professor D. Doitchinov ∗ This paper was written while the first author was supported by the Swiss National Science Foundation under grants 21–30585.91 and 2000-041745.94/1 and by the Spanish Ministry of Education and Sciences under DGES grant SAB94-0120. The second author was supported under DGES grant PB95-0737. During her stay at the University of Berne the third author was supported by the first author’s grant 2000-041745.94/1 from the Swiss National Science Foundation.We show...
Throughout this abstract, is a topological Abelian group and is the space of continuous homomorphisms from into the circle group in the compact-open topology. A dense subgroup of is said to determine if the (necessarily continuous) surjective isomorphism given by is a homeomorphism, and is determined if each dense subgroup of determines . The principal result in this area, obtained independently by L. Außenhofer and M. J. Chasco, is the following: Every metrizable group is...
For any topological group the dual object is defined as the set of equivalence classes of irreducible unitary representations of equipped with the Fell topology. If is compact, is discrete. In an earlier paper we proved that is discrete for every metrizable precompact group, i.e. a dense subgroup of a compact metrizable group. We generalize this result to the case when is an almost metrizable precompact group.
We determine the correspondence of infinitesimal characters of representations which occur in Howe's Duality Theorem. In the appendix we identify the lowest K-types, in the sense of Vogan, of the unitary highest weight representations of real reductive dual pairs with at least one member compact.
Let ⟨G,X,α⟩ be a G-space, where G is a non-Archimedean (having a local base at the identity consisting of open subgroups) and second countable topological group, and X is a zero-dimensional compact metrizable space. Let be the natural (evaluation) action of the full group of autohomeomorphisms of the Cantor cube. Then (1) there exists a topological group embedding ; (2) there exists an embedding , equivariant with respect to φ, such that ψ(X) is an equivariant retract of with respect to φ...
Let S be a semidirect product S = N⋊ A where N is a connected and simply connected, non-abelian, nilpotent meta-abelian Lie group and A is isomorphic to , k>1. We consider a class of second order left-invariant differential operators on S of the form , where , and for each is left-invariant second order differential operator on N and , where Δ is the usual Laplacian on . Using some probabilistic techniques (e.g., skew-product formulas for diffusions on S and N respectively) we obtain an...
It was known that free Abelian groups do not admit a Hausdorff compact group topology. Tkachenko showed in 1990 that, under CH, a free Abelian group of size admits a Hausdorff countably compact group topology. We show that no Hausdorff group topology on a free Abelian group makes its -th power countably compact. In particular, a free Abelian group does not admit a Hausdorff -compact nor a sequentially compact group topology. Under CH, we show that a free Abelian group does not admit a Hausdorff...