The unitary dual for complex classical Lie groups.
Nous étudions le comportement à l’infini des intégrales de Poisson liées aux groupes de déplacements de Cartan.
We first establish a geometric Paley-Wiener theorem for the Dunkl transform in the crystallographic case. Next we obtain an optimal bound for the norm of Dunkl translations in dimension 1. Finally, we describe more precisely the support of the distribution associated to Dunkl translations in higher dimension.
Let L be the distinguished Laplacian on certain semidirect products of ℝ by ℝⁿ which are of ax + b type. We prove pointwise estimates for the convolution kernels of spectrally localized wave operators of the form for arbitrary time t and arbitrary λ > 0, where ψ is a smooth bump function supported in [-2,2] if λ ≤ 1 and in [1,2] if λ ≥ 1. As a corollary, we reprove a basic multiplier estimate of Hebisch and Steger [Math. Z. 245 (2003)] for this particular class of groups, and derive Sobolev...
It is shown that if G is a weakly amenable unimodular group then the Banach algebra , where is the Figà-Talamanca-Herz Banach algebra of G, is a dual Banach space with the Radon-Nikodym property if 1 ≤ r ≤ max(p,p’). This does not hold if p = 2 and r > 2.