Displaying 41 – 60 of 733

Showing per page

A concept of absolute continuity and a Riemann type integral

B. Bongiorno, Washek Frank Pfeffer (1992)

Commentationes Mathematicae Universitatis Carolinae

We present a descriptive definition of a multidimensional generalized Riemann integral based on a concept of generalized absolute continuity for additive functions of sets of bounded variation.

A conjecture on general means.

de La Grandville, Olivier, Solow, Robert M. (2006)

JIPAM. Journal of Inequalities in Pure & Applied Mathematics [electronic only]

A contour view on uninorm properties

Koen C. Maes, Bernard De Baets (2006)

Kybernetika

Any given increasing [ 0 , 1 ] 2 [ 0 , 1 ] function is completely determined by its contour lines. In this paper we show how each individual uninorm property can be translated into a property of contour lines. In particular, we describe commutativity in terms of orthosymmetry and we link associativity to the portation law and the exchange principle. Contrapositivity and rotation invariance are used to characterize uninorms that have a continuous contour line.

A converse of the Arsenin–Kunugui theorem on Borel sets with σ-compact sections

P. Holický, Miroslav Zelený (2000)

Fundamenta Mathematicae

Let f be a Borel measurable mapping of a Luzin (i.e. absolute Borel metric) space L onto a metric space M such that f(F) is a Borel subset of M if F is closed in L. We show that then f - 1 ( y ) is a K σ set for all except countably many y ∈ M, that M is also Luzin, and that the Borel classes of the sets f(F), F closed in L, are bounded by a fixed countable ordinal. This gives a converse of the classical theorem of Arsenin and Kunugui. As a particular case we get Taĭmanov’s theorem saying that the image of...

Currently displaying 41 – 60 of 733